Vector Product - Cross Product (2024)

(Vector Product of Two Vectors)

The cross product, also called vector product of two vectors is written \(\vec{u}\times \vec{v}\) and is the second way to multiply two vectors together.

When we multiply two vectors using the cross product we obtain a new vector. This is unlike the scalar product (or dot product) of two vectors, for which the outcome is a scalar (a number, not a vector!).

In fact, the cross product of two vectors \(\vec{u}\) and \(\vec{v}\) is a "new" vector that is perpendicular to both \(\vec{u}\) and \(\vec{v}\), we say that \(\vec{u}\times \vec{v}\) is normal to the plane containing \(\vec{u}\) and \(\vec{v}\).

Vector Product - Cross Product (1)

How to Calculate the Cross Product

To calculate the vector product, or cross product, of two vectors we use either one of the following two options:

  • Option 1: use the Formula (learn it off by heart)
  • Option 2: use Matrix Algebra (recommended method)

We look at both options here.

Option 1 - The Formula: Vector Product \(\vec{u}\times \vec{v}\)

Given two vectors \(\vec{u} = \begin{pmatrix}u_1 \\ u_2 \\ u_3 \end{pmatrix}\) and \(\vec{v} = \begin{pmatrix}v_1 \\ v_2 \\ v_3 \end{pmatrix}\), the vector product, or cross product, \(\vec{u}\times \vec{v}\) can be calculated using the following formula:\[\vec{u} \times \vec{v} = \begin{pmatrix}u_2v_3 - v_2u_3\end{pmatrix} \vec{i} - \begin{pmatrix}u_1v_3 -v_1u_3\end{pmatrix} \vec{j} + \begin{pmatrix}u_1v_2 - v_1u_2\end{pmatrix} \vec{k}\]To avoid having the subtraction between the first and second term, some math courses (such as IB AA HL Mathematics) rewrite this formula as:\[\vec{u} \times \vec{v} = \begin{pmatrix}u_2v_3 - v_2u_3\end{pmatrix} \vec{i} + \begin{pmatrix} v_1u_3 - u_1v_3\end{pmatrix} \vec{j} + \begin{pmatrix}u_1v_2 - v_1u_2\end{pmatrix} \vec{k}\]Both formula are completely equivalent.

Example

Using the formula, stated above, find the cross product, \(\vec{u}\times \vec{v}\) of \(\vec{u} = \begin{pmatrix} 1 \\ -3 \\ 2 \end{pmatrix}\) and \(\vec{v} = \begin{pmatrix} 4 \\ 0 \\ 6 \end{pmatrix}\).

Solution

Using the second formula, stated above:\[\vec{u} \times \vec{v} = \begin{pmatrix}u_2v_3 - v_2u_3\end{pmatrix} \vec{i} + \begin{pmatrix} v_1u_3 - u_1v_3\end{pmatrix} \vec{j} + \begin{pmatrix}u_1v_2 - v_1u_2\end{pmatrix} \vec{k}\]With \(u_1 = 1\), \(u_2 = -3\), \(u_3 = 2\), \(v_1 = 4\), \(v_2 = 0\) and \(v_3 = 6\), we find:\[\begin{aligned}\vec{u}\times \vec{v} & =\begin{pmatrix}-3 \times 6 - 0 \times 2 \end{pmatrix}\vec{i} + \begin{pmatrix}4 \times 2 - 1 \times 6 \end{pmatrix}\vec{j} + \begin{pmatrix}1 \times 0 - 4 \times (-3)\end{pmatrix} \vec{k} \\& = \begin{pmatrix}-18 -0\end{pmatrix}\vec{i} + \begin{pmatrix}8 - 6 \end{pmatrix} \vec{j} + \begin{pmatrix}0+12\end{pmatrix}\vec{k} \\\vec{u}\times \vec{v} & = -18 \vec{i} + 2 \vec{j} + 12 \vec{k}\end{aligned} \]

Option 2: Matrix Algebra - Determinant of a 3 by 3 Matrix (recommended)

Given two vectors \(\vec{u} = \begin{pmatrix}u_1 \\ u_2 \\ u_3 \end{pmatrix}\) and \(\vec{v} = \begin{pmatrix}v_1 \\ v_2 \\ v_3 \end{pmatrix}\), the vector product, or cross product, \(\vec{u}\times \vec{v}\) equals to the following:\[\vec{u}\times \vec{v} = \begin{vmatrix}\vec{i} & \vec{j} & \vec{k} \\u_1 & u_2 & u_3 \\v_1 & v_2 & v_3\end{vmatrix}\]Notice that:

  • the components in the first row consist of the unit base vectors \(\vec{i}\), \(\vec{j}\) and \(\vec{k}\) (this will always be the first row),
  • the second row is the first vector in the product \(\vec{u}\times \vec{v}\), so in this case \(\vec{u}\),
  • the third row is the second vector in the product \(\vec{u}\times \vec{v}\), so in this case \(\vec{v}\).

Tutorial: Cross Product - Determinant Method

Given the two vectors \(\vec{a} = \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix}\) and \(\vec{b} = \begin{pmatrix} 5 \\ 0 \\ 4 \end{pmatrix}\), we learn how to calculate the cross product, \(\vec{a}\times \vec{b}\), using Matrix Algebra.

Example

Given \(\vec{u} = \begin{pmatrix} 2 \\ 1 \\ -3 \end{pmatrix}\) and \(\vec{v} = \begin{pmatrix} 4 \\ 0 \\ 5 \end{pmatrix}\), calculate their cross product \(\vec{u}\times \vec{v}\).

Solution

Using the method we just saw, we can state:\[\begin{aligned}\vec{u} \times \vec{v} & = \begin{vmatrix}\vec{i} & \vec{j} & \vec{k} \\2 & 1 & -3 \\4 & 0 & 5\end{vmatrix} \\& = \vec{i} \begin{vmatrix} 1 & -3 \\ 0 & 5 \end{vmatrix} - \vec{j} \begin{vmatrix} 2 & -3 \\ 4 & 5\end{vmatrix} + \vec{k} \begin{vmatrix} 2 & 1 \\ 4 & 0 \end{vmatrix} \\& = \vec{i} \begin{pmatrix} 1 \times 5 - 0 \times (-3)\end{pmatrix} - \vec{j} \begin{pmatrix} 2\times 5 - 4 \times (-3) \end{pmatrix} + \vec{k} \begin{pmatrix} 2\times 0 - 4 \times 1 \end{pmatrix} \\& = \vec{i}\begin{pmatrix} 5 - 0\end{pmatrix} - \vec{j} \begin{pmatrix} 10 - (-12)\end{pmatrix} + \vec{k} \begin{pmatrix} 0 - 4 \end{pmatrix} \\& = \vec{i} \begin{pmatrix} 5 \end{pmatrix} - \vec{j}\begin{pmatrix} 10+12 \end{pmatrix} + \vec{k} \begin{pmatrix} - 4 \end{pmatrix} \\\vec{u} \times \vec{v} & = 5 \vec{i} - 22 \vec{j} - 4 \vec{k}\end{aligned}\]That's our final answer, we can now state that \(\vec{u} \times \vec{v} = 5 \vec{i} - 22 \vec{j} - 4 \vec{k} \).

Exercise 1

  1. Find \(\vec{a} \times \vec{b}\), given \(\vec{a} = \begin{pmatrix}2 \\ 3 \\ 4 \end{pmatrix}\) and \(\vec{b} = \begin{pmatrix} 5 \\ -2 \\ 1 \end{pmatrix}\).
  2. Find \(\vec{c}\times \vec{d}\), given \(\vec{c} = 3 \vec{i} + 5 \vec{j} - \vec{k}\) and \(\vec{d} = \vec{i} -4 \vec{j} +2 \vec{k}\).
  3. Find \(\vec{u}\times \vec{v}\), given \(\vec{u} = 6 \vec{i} - 3 \vec{k}\) and \(\vec{v} = -2 \vec{i} + \vec{j} + 5 \vec{k}\).
  4. Find \(\vec{a} \times \vec{b}\), given \(\vec{a} = \begin{pmatrix}-2 \\ 0 \\ 6 \end{pmatrix}\) and \(\vec{b} = \begin{pmatrix} 4 \\ 1 \\ 3 \end{pmatrix}\).
  5. Find \(\vec{m}\times \vec{n}\), given \(\vec{m} = -3\vec{i} + 5 \vec{j} - \vec{k}\) and \(\vec{n} = 4\vec{j} + 7 \vec{k}\).
  6. Find \(\vec{u}\times \vec{v}\), given \(\vec{u} = \begin{pmatrix}8 \\ - 1 \\ -2 \end{pmatrix}\) and \(\vec{v} = \begin{pmatrix}-3 \\ - 2 \\ -4 \end{pmatrix}\).
  7. Find \(\vec{a}\times \vec{b}\), given \(\vec{a} = 3 \vec{i} - 2 \vec{j}\) and \(\vec{b} = 5 \vec{i} + \vec{j}\).
  8. Find \(\vec{c}\times \vec{d}\), given \(\vec{c} = \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix}\) and \(\vec{d} = \begin{pmatrix} 0 \\ 3 \\ 5 \end{pmatrix}\).

Note: this exercise can be downloaded as a worksheet to practice with: Worksheet 1

Exercise 1 - Answer Key

  1. We find \(\vec{a}\times \vec{b} = 11 \vec{i} + 18\vec{j} - 19\vec{k}\).
  2. We find \(\vec{c}\times \vec{d} = 6 \vec{i} - 7 \vec{j} - 17 \vec{k}\).
  3. We find \(\vec{u}\times \vec{v} = 3\vec{i} - 24\vec{j} + 6\vec{k}\).
  4. We find \(\vec{a}\times \vec{b} = -6\vec{i} + 30 \vec{j} - 2\vec{k}\).
  1. We find \(\vec{m}\times \vec{n} = 39\vec{i} + 21 \vec{j} -12 \vec{k}\).
  2. We find \(\vec{u}\times \vec{v} = 38\vec{j} - 19\vec{k}\).
  3. We find \(\vec{a}\times \vec{b} = 13\vec{k}\).
  4. We find \(\vec{c}\times \vec{d} = 12\vec{i} - 10 \vec{j} + 6 \vec{k}\).

AREAS OF PARALLELOGRAMS & TRIANGLES

The vector product, or cross product, of two vectors can be used to calculate the area of a parallelogram as well as the area of a triangle.

AREA of a PARALLELOGRAM

Given a parallelogram, whose sides are defined by two vectors \(\vec{a}\) and \(\vec{b}\), its area is given by:\[\text{Area} = \begin{vmatrix} \vec{a}\times \vec{b}\end{vmatrix}\]that is: the area of the parallelogram is equal to the magnitude of the cross product.

Note : the area of the parallelogram is equal to the length of the vector \(\vec{a}\times \vec{b}\):

Vector Product - Cross Product (2)

Example

A parallelogram has sides lengths defined by the vectors \(\vec{a} = \begin{pmatrix} 6 \\ -1 \\ 3 \end{pmatrix}\) and \(\vec{b} = \begin{pmatrix} 1 \\ 5 \\ 4 \end{pmatrix}\).

Find this parallelogram's area.

Solution

Using the formula, stated above, we can write:\[\text{Area} = \begin{vmatrix} \vec{a}\times \vec{b}\end{vmatrix}\]Where:\[\begin{aligned}\vec{a}\times \vec{b}& = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 6 & -1 & 3 \\ 1 & 5 & 4 \end{vmatrix} \\& = \vec{i} \begin{vmatrix} - 1 & 3 \\ 5 & 4 \end{vmatrix} - \vec{j} \begin{vmatrix} 6 & 3 \\ 1 & 4 \end{vmatrix} + \vec{k} \begin{vmatrix} 6 & -1 \\ 1 & 5 \end{vmatrix} \\& = \vec{i} \begin{pmatrix} -1 \times 4 - 5 \times 3 \end{pmatrix} - \vec{j} \begin{pmatrix} 6 \times 4 - 1 \times 3 \end{pmatrix} + \vec{k} \begin{pmatrix} 6 \times 5 - 1 \times (-1)\end{pmatrix} \\& = \vec{i} \begin{pmatrix} - 4 - 15 \end{pmatrix} - \vec{j} \begin{pmatrix} 24 - 3 \end{pmatrix} + \vec{k} \begin{pmatrix} 30 - (-1) \end{pmatrix} \\& = \vec{i}(-19) - \vec{j}(21) + \vec{k}(31)\\\vec{a}\times \vec{b}& = - 19\vec{i} - 21 \vec{j} + 31 \vec{k}\end{aligned}\]The parallelogram's area is therefore:\[\begin{aligned}\text{Area} & = \begin{vmatrix} \vec{a}\times \vec{b}\end{vmatrix} \\& = \sqrt{(-19)^2 + (-21)^2 + 31^2} \\& = \sqrt{1763} \\\text{Area} & = 42.0 \quad \text{(3 s.f.)}\end{aligned}\]Rounding the answer to 3 significant figures, the area is \(42.0\) units of area.

AREA of a TRIANGLE

Given a triangle, whose sides are defined by two vectors \(\vec{a}\) and \(\vec{b}\), its area is given by:\[\text{Area} = \frac{1}{2} \begin{vmatrix} \vec{a}\times \vec{b}\end{vmatrix}\]Note : this is half of the area of the parallelogram whose sides are \(vec{a}\) and \(\vec{b}\).

Example

A triangle has two sides defined by the vectors \(\vec{a} = \begin{pmatrix} -1 \\ 7 \\ 1 \end{pmatrix}\) and \(\vec{b} = \begin{pmatrix} 1 \\ 4 \\ 3 \end{pmatrix}\).

Find this triangle's area.

Solution

Using the formula, stated above, we can write:\[\text{Area} = \frac{1}{2}\begin{vmatrix} \vec{a}\times \vec{b}\end{vmatrix}\]Where:\[\begin{aligned}\vec{a}\times \vec{b}& = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 6 & -1 & 7 \\ 1 & 4 & 3 \end{vmatrix} \\& = \vec{i} \begin{vmatrix} 7 & 1 \\ 4 & 3 \end{vmatrix} - \vec{j} \begin{vmatrix} -1 & 1 \\ 1 & 3 \end{vmatrix} + \vec{k} \begin{vmatrix} -1 & 7 \\ 1 & 4 \end{vmatrix} \\& = \vec{i} \begin{pmatrix} 7 \times 3 - 4 \times 1 \end{pmatrix} - \vec{j} \begin{pmatrix} -1\times 3 - 1\times 1 \end{pmatrix} + \vec{k} \begin{pmatrix} -1 \times 4 - 1 \times 7 \end{pmatrix} \\& = \vec{i} \begin{pmatrix} 21 - 4 \end{pmatrix} - \vec{j} \begin{pmatrix} -3 - 1 \end{pmatrix} + \vec{k} \begin{pmatrix} -4 - 7 \end{pmatrix} \\& = \vec{i}(17) - \vec{j}(-4) + \vec{k}(-11)\\\vec{a}\times \vec{b}& = 17\vec{i} +4 \vec{j} -11 \vec{k}\end{aligned}\]The triangle's area is therefore:\[\begin{aligned}\text{Area} & = \frac{1}{2}\begin{vmatrix} \vec{a}\times \vec{b}\end{vmatrix} \\& = \sqrt{17^2 + 4^2 + (-11)^2} \\& = \sqrt{426} \\\text{Area} & = 20.6 \quad \text{(3 s.f.)}\end{aligned}\]Rounding the answer to 3 significant figures, the area is \(20.6\) units of area.

Exercise 2 (Exam Style Questions)

  1. The vectors \(\vec{a}\), \(\vec{b}\), \(\vec{c}\) satisfy the equation \(\vec{a}+\vec{b} + \vec{c} = \vec{0}\). Show that \(\vec{a}\times \vec{b} = \vec{b}\times \vec{c} = \vec{c}\times \vec{a}\).
Vector Product - Cross Product (2024)

References

Top Articles
17 Best Fat Bombs Recipe - Easy To Make Keto Snacks
Homemade Tartar Sauce Recipe
Mountain Dew Bennington Pontoon
Winston Salem Nc Craigslist
The 10 Best Restaurants In Freiburg Germany
1970 Chevelle Ss For Sale Craigslist
Did 9Anime Rebrand
My Boyfriend Has No Money And I Pay For Everything
877-668-5260 | 18776685260 - Robocaller Warning!
Red Wing Care Guide | Fat Buddha Store
Tabler Oklahoma
Ncaaf Reference
Call Follower Osrs
Love Compatibility Test / Calculator by Horoscope | MyAstrology
How Many Cc's Is A 96 Cubic Inch Engine
Gma Deals And Steals Today 2022
5 high school volleyball stars of the week: Sept. 17 edition
Icommerce Agent
라이키 유출
Copart Atlanta South Ga
Webcentral Cuny
Popular Chinese Restaurant in Rome Closing After 37 Years
Noaa Duluth Mn
Gina Wilson All Things Algebra Unit 2 Homework 8
Spn 520211
Ezel Detailing
The Old Way Showtimes Near Regency Theatres Granada Hills
European city that's best to visit from the UK by train has amazing beer
Myql Loan Login
Netwerk van %naam%, analyse van %nb_relaties% relaties
Fiona Shaw on Ireland: ‘It is one of the most successful countries in the world. It wasn’t when I left it’
Cowboy Pozisyon
Cylinder Head Bolt Torque Values
Summoners War Update Notes
Best Laundry Mat Near Me
Shauna's Art Studio Laurel Mississippi
Khatrimmaza
Leland Nc Craigslist
Today's Final Jeopardy Clue
Usf Football Wiki
The Minneapolis Journal from Minneapolis, Minnesota
Restored Republic May 14 2023
10 Rarest and Most Valuable Milk Glass Pieces: Value Guide
Isabella Duan Ahn Stanford
Jamesbonchai
How to Install JDownloader 2 on Your Synology NAS
Unit 11 Homework 3 Area Of Composite Figures
8 4 Study Guide And Intervention Trigonometry
116 Cubic Inches To Cc
Pulpo Yonke Houston Tx
Latest Posts
Article information

Author: Msgr. Benton Quitzon

Last Updated:

Views: 5846

Rating: 4.2 / 5 (43 voted)

Reviews: 90% of readers found this page helpful

Author information

Name: Msgr. Benton Quitzon

Birthday: 2001-08-13

Address: 96487 Kris Cliff, Teresiafurt, WI 95201

Phone: +9418513585781

Job: Senior Designer

Hobby: Calligraphy, Rowing, Vacation, Geocaching, Web surfing, Electronics, Electronics

Introduction: My name is Msgr. Benton Quitzon, I am a comfortable, charming, thankful, happy, adventurous, handsome, precious person who loves writing and wants to share my knowledge and understanding with you.